Learning to Locate Relative Outliers
نویسندگان
چکیده
Outliers usually spread across regions of low density. However, due to the absence or scarcity of outliers, designing a robust detector to sift outliers from a given dataset is still very challenging. In this paper, we consider to identify relative outliers from the target dataset with respect to another reference dataset of normal data. Particularly, we employ Maximum Mean Discrepancy (MMD) for matching the distribution between these two datasets and present a novel learning framework to learn a relative outlier detector. The learning task is formulated as a Mixed Integer Programming (MIP) problem, which is computationally hard. To this end, we propose an effective procedure to find a largely violated labeling vector for identifying relative outliers from abundant normal patterns, and its convergence is also presented. Then, a set of largely violated labeling vectors are combined by multiple kernel learning methods to robustly locate relative outliers. Comprehensive empirical studies on real-world datasets verify that our proposed relative outlier detection outperforms existing methods.
منابع مشابه
Contextual Outlier Interpretation
Outlier detection plays an essential role in many data-driven applications to identify isolated instances that are dierent from the majority. While many statistical learning and data mining techniques have been used for developing more eective outlier detection algorithms, the interpretation of detected outliers does not receive much aention. Interpretation is becoming increasingly important...
متن کاملImpact of Outliers in Data Envelopment Analysis
This paper will examine the relationship between "Data Envelopment Analysis" and a statistical concept ``Outlier". Data envelopment analysis (DEA) is a method for estimating the relative efficiency of decision making units (DMUs) having similar tasks in a production system by multiple inputs to produce multiple outputs. An important issue in statistics is to identify the outliers. In this pap...
متن کاملRobust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this ...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملWho Should be Interviewed? A Response from Cluster Analysis
Objective: This article presents an application of cluster analysis for social sciences researches especially those studies that have an interview as part of their data collection. This application is more suitable for sequential mixed method researchers who use quantitative data to frame subsequent qualitative subsamples for conducting interviews. Methods: In more detail, the algorithm (i....
متن کامل